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Circuit Models for Three-Dimensional Geometrices
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Abstract—The Partial Element Equivalent Circuit (PEEC)
approach has proven to be useful for the modeling of many
different electromagnetic problems. The technique can be
viewed as an approach for the electrical circuit modeling for
arbitrary three dimensional geometries. For example, the ‘3D
transmission line’’ properties of VLSI interconnects and pack-
ages can be modeled. Recently, we extended the method to in-
clude retardation with the rPEEC models. So far the dielectrics
have been taken into account only in an approximate way. In
this paper, we generalize the technique to include arbitrary ho-
mogeneous dielectric regions. The new circuit models are ap-
plied in the frequency as well as the time domain. The time
solution allows the modeling of VLSI systems which involve in-
terconnects as well as nonlinear transistor circuits.

I. INTRODUCTION

HE SPEED of VLSI systems has increased consid-
erably in the last few years. For high performance
systems, the rise time of the signals are well below one
nanosecond and the cycle time is rapidly decreasing to
take advantage of the increased performance of new tech-
nologies. One of the consequences of this is that the ac-
curate electrical modeling of the passive parasitic ele-
ments has become more important since the interconnects
contribute a large portion to the signal delays. For VLSI
systems, other aspects like signal distortion and unwanted
signal coupling among the different wires must be accu-
rately predicted since these factors limit the ultimate per-
formance of systems. Recently, other factors like electro-
magnetic interference (EMI) [1] have become important
for VLSI designs. They too require extensive modeling of
both circuits and interconnects. The main challenge in all
these problems is the complexity of the geometries which
must be modeled in order to provide realistic answers.
The topic of VLSI interconnect modeling is relatively
recent in comparison to the general area of transmission
line modeling. The first work on interconnections focused
mostly on two dimensional transmission line models e.g.,
[2] since the larger structures were described with suffi-
cient accuracy by this type of model for the frequencies
of interest. The two dimensional transmission line theory
requires that the cross-sections of the conductors remains
constant for a distance which is long compared to the
cross-sectional dimensions. Today, this approach is still
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valid for some aspects of VLSI systems like the wires on
some printed circuit boards. As the structures have be-
come more miniaturized, the three dimensional aspects
have become more important. Progress has been made
since then in both the two and three dimensional modeling
areas. A large number of references are given in [3] for
both two and three dimensional interconnect models.
Also, more recently, a relatively large body ‘of work is
being performed in the three dimensional modeling in the
frequency domain using both finite difference e.g., [4],
[5] and integral equation formulations e.g., [6]-[9]. Also,
a number of commercially available tools have been cre-
ated recently aimed at the solution of such problems [10].
The majority of the tools and techniques are for the fre-
quency domain only. -

Complexity is one of the main challenges which must
be overcome in the solution of these problems. Because
the number of transistors and interconnects in VLSI sys-
tems is continuously increasing, approximations must be
used whenever possible to manage the complexity. Cir-
cuit theory is probably the area where complexity has been
managed the best by the application of many different

“model simplification techniques. This motivated us to

translate the electromagnetic interconnect problem to the
circuit domain. Circuit model simplifications can be di-
vided into two different cases. In the first case, we can set
up a simplified model to begin with. For example the small
dimensions and the limited distance of the on chip. cou-
pling may make the use of retardation unnecessary and
the far couplings may be ignored. Also, most of the cou-
pling occurs within a wavelength of the highest fre-
quency. In the second class of approximations, we can
replace a complex model by a far simpler one which is
sometimes called a macromodel. The AWE technique [11]
is one of the approaches where essentially a lower fre-
quency approximation is used to produce a much simpler
model which is adequate for the frequencies of interest
for the application at hand. In fact, the AWE technique
has been applied very recently to some of these geome-
tries [12].

Circuit oriented modeling of electromagnetics prob-
lems has a long history [13]. More recent work in this
area is based on both differential equations [14] as well as
the integral equation formulations [15]. It is interegting to
note that most texts e.g. [16] do attempt to give some
circuit interpretation of Maxwell’s equations. However
they only give a rather elementary treatment of the sub-
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ject. A comprehensive approach for the circuit modeling
of three dimensional geometries is the partial element
- equivalent approach (PEEC) [15]. One of the useful as-
pects of PEEC oriented modeling approach is its gener-
ality. The models are applicable both in the time and fre-
quency domain. Further, calculations for the partial
capacitances (Fig. 1) or coefficients of potential and par-
tial inductances for the model can be performed inde-
pendently of the actual circuit domain computations [17]-
[19] like the transient analysis or the frequency analysis.
The approximate implementation of these models is not
unique and different representations may be used depend-
ing on the problem solved.

The accuracy of the PEEC circuit modeling approach
is the same as that of the full-wave solution. In fact, it is
very similar to the moment method (MoM) solution [7],
with the exception of the local approximation of the cur-
rents and the charges. Further, it is well known that the
TEM models for two dimensional geometries correspond
to an exact solutions for the wave propagation based on
static capacitance and inductance computations. Hence,
as an approximation, it is possible to employ quasi-static
capacitances for the PEEC models for geometries with
finite dielectrics [3]. It is obvious that this approximation
will lead to errors for sufficiently high frequencies. In fact,
the circuit modeling using capacitances is invalid as soon
as the retardations become significant. PEEC models
which include retarded effects, called rPEEC, have re-
cently been shown to be useful for the circuit modeling
of radiation type problems [20]. Our basic approach is to
include the retardation by delay sources in both the time
and the frequency domain.

In this paper, we give an extension of the PEEC and
rPEEC approach. The key new work is that finite dielec-
tric region are included in the formulation without ap-
proximations. This makes the models analogous to a full-
wave solution. The main differences between our models
and a full-wave model are that we formulate the problem
in the circuit domain and that charges as well as currents
are used as unknowns for both the time and frequency
domain solutions. This extension of the IPEEC modeling
approach is valuable for the solution of many practical
problems. Also, from a theoretical point of view, it is an
important tool for the study of the couplings between the
electric and magnetic field at dielectric interfaces. For ex-
ample, the sources of coupling can be identified and the
magnitude and the nature of this coupling can be studied.
" Other issues of interest are the modeling of dielectric in-
terfaces with as few additional unknowns as possible to
keep the model complexity small. If the dielectrics can be
represented with few additional internal nodes, as is the
case for thin layers, then the solution is very efficient in
term of unknowns.

In Section II we derive the general integral equation
formulation with the extension to multiterminal elements
and dielectric regions. Sections III and IV is devoted to
the derivation of the new rPEEC model and Section V
gives results of the application of the method.
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Fig. 1. Representation of the capacitive terms of a circuit with three nodes
A, B and C and new equivalent circuit.

II. ForRMULATION INCLUDING FINITE DIELECTRIC
REGIONS

A. Basic Formulation

The interconnection problem we consider here has ar-
bitrary finite size dielectric regions besides the conductors
or wires. A simple conductor—dielectric structure is dis-
played in Fig. 2. We only need to include 4 bodies in our
examples since this is sufficient to show all the necessary
couplings. Also, we avoid all the rather obvious sums over
all the conductors with the benefit of keeping all the equa-
tions simple. We start from the work in [15] and use the
additional insight on how to include dielectric layers in
the moment method solution e.g. [6], [8]. Here, we spe-
cifically use approximations of the currents, charges and
potentials (voltages) which are appropriate for an equiv-
alent circuit representation. The key idea of the formula-
tion is to model the displacement current due to the bound
charges for dielectrics with €, > 1 separately from the
conducting currents due to the free charges [21]. Hence,
the Maxwell equation for the dispacement is taken into
account as

F B
— +
V-E:L——q— (D

€o

where g” is the free charge and ¢? is the bound charge
due to the dielectric regions. The description for the di-
electric region is separated in the solution method. To ar-
rive at a consistent equivalent circuit for the static as well
as the dynamic case, the dielectric is represented with a
three-dimensional mesh of excess capacitances of a value
defined in (18). As will be evident below, this leads to a
very efficient solution approach.

We write the sum of all the sources of electric field [16]
at any point in a conductor

o -
- (: 0,900 L vsm @

EO (r 5 t) a[
where E, is an applied electric field (if any), J€ is the
current density in a conductor, A and @ are vector and
scalar potentials, respectively. The dielectrics are taken
into account separately as an equivalent current in a free
space environment. This is accomplished through adding
and subtracting e, (0E /1) in the Maxwell equation for H,
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Fig. 2. Illustration of the finite conductor and dielectric problem.
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Here, the equivalent current in (3) is written as a total
current

JF 0 =JF, D + le, — 1) Z—f @

where J€ (7, 1) is the conductor current and the remainder
of the equations is the equivalent polarization current due
the the dielectrics. We can easily check that (3) and (4)
reduce to the standard case for ¢, = 1. The vector poten-
tial 4 is for a single conductor at a field point 7 given by

a0 = - S KG F)IF, i) dv’ (5

where v’ is the volume of the material over which the

current density is flowing and the retardation time is given

by

[F -7}

fg=1— ——rt (6)
c

which simply is the time retarded by the free space travel

time between the points 7 and 7'. In the formulation used

here, both the retardation and the Greens functions are

free space quatities. For convenience and notational clar-

ity we define the Kernel

1

K, 7') = 7 — 7

Q)

Similarly, the scalar potential is
. - 1 S — =1 Tor '
d(F, H = Gmeg o KF#, v Yyq' (', o dv (8)

where g7 = g% + ¢®. Finally, using the above equations,
we can formulate an integral equation for the electric field
at a point 7 which is to be located either on a conductor
. or inside a dielectric region. Starting from (2) with the
externally applied electric field set to zero, and substitut-
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ing for A and & from (5) and (8) respectively we get for
the field point on a conductor

I, 1) uS __ICE )
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o Tap ), KO&TD Ty
2 E(F', ty)

teole — Do S KC P~ dv’
v

v

+ — S K# 7)q (', ndv' = 0. )
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The other case we need to consider is the situation when

the field point is in a dielectric region with ¢, > 1

AITCF’, 1))

ot dv

EG 1 + = S KT, 7')
47(' v’
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+ eole, — 1) H Sv’ K@, 7 )-—————at2 dv

v = =gy T
+ e ) Kr, 7' )q' ' (r', 0)dv’' = 0. (10)

ey
We observe that the form of both equations is the same,
with the exception of the local electric field, which is
given by the material in which the field point resides. This
simplifies the discretization and equivalent circuit inter-
pretations for (9) and (10) which are performed in the next
section. ’

B. Discretization of Unknowns

The conductor arrangement in Fig. 2 includes the types
of conductors and dielectric regions which must be con-
sidered for a general formulation of the mixed conductors
and dielectrics problem. For clarity we assume that the
dielectrics are lossless. To solve the integral equation (9)
numerically we choose appropriate approximation for the
current, potential and charge variables. We will not use

- the standard surface approximations which are usually

employed for the infinite frequency solution. Convention-
ally, the current is assumed to flow in a thin surface layer
only due to the skin effect approximation which is more
suitable for microwave applications. Here, we assume the
current flow to be uniform inside a cell of conductor,
which leads to a solution which is consistent with the low
frequency solution also. Hence, electrically thick conduc-
tors must still be further divided if the skin effect is to be
modeled accurately. In many practical cases this can be
avoided since the conductor thicknesses are often com-
parable to the skin depth. The charges are on the surfaces
of the conductors. The different approximations used for
the currents and charges require that we cannot utilize the
continuity equation directly to replace the charges by cur-
rent variables as is done in the conventional moment type
solutions [7] in the form

a
% _

v-J+
ot

an

The charges are, in all the solution approaches, assumed
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Fig. 3. Cell Structure for finite conductors.

to be'located on the conductor surfaces since the relaxa-
tion times move the charges ‘‘instantancously’’ to the
conductor surfaces for the high conductivities of the con-
ductors involved. In our approach, we will implement the
continuity equation in the form of Kirchoff’s current law.
This task can be left to the circuit solver which can be a
general purpose program like SPICE [22] or ASTAP [23].

The above considerations are used in the actual discre-
tization of the currents and charges as well as the poten-
tials. We divide the conductors up into rectangular cells
with a uniform current flow, similar to the conventional
approximation for a resistance and partial inductance
problems [15], [19]. Hence, the insides of the conductor
and the dielectric regions are divided up into ‘‘blocks’” or
“‘cells’’ for which we assume that the conduction or dis-
placement currents respectively are uniform. Further, the
surfaces of the conductors are completely laid out with
capacitive cells to represent the displacement currents.
Fig. 3 gives example cells for both conductor and dielec-
tric surfaces which may belong to various surfaces in the
geometry shown in Fig. 2. The dotted area cells in Fig.
3 are surface patches for the free or total charge densities,
q” or q” respectively on the conductors, depending on
whether the surfaces touch dielectric regions. All dielec-
trics needs to be covered with surface cells for bound
charge ¢®. The volume cells in the dielectric regions are
the appropriate representation for the polarization cur-
rents inside the dielectrics, as will become evident below.
The volume parts of the «, 8 and § cells are located di-
rectly under the surface while + is an interior cell.

C. Discretization of the Integral Equation

In this subsection we will apply the discretizations. of
the last subsection to the integral equation (9) for the cell
structure shown in Fig. 3. The two conductor and dielec-
tric cells shown may be located either on the same or on
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different bodies. Dielectric cell v is an internal cell and
has no outside surface while dielectric cell 6 is on the
surface of the dielectric body. Hence, the derivation in-
cludes all possible cases. We start by recognizing that
three coupled integral equation (I.E.) result if we repre-
sent the vector quantities in terms of the Cartesian coor-
dinates. For this case the vector quantities are J = J, £ +
J,9 + J,zand E = E;£ + E,9 + E 2. Using this, the
three 1.E. are identical in form with the exception of the
space directions x, y, z. Hence, we will consider cells in
the y-direction only, without loss of generality. This ori-
entation corresponds to the cells shown in Fig. 3. Two
different cases must be considered for the general case. In
one situation, we locate the field point 7 on a conductor
cell e.g. a. For the second case the field point 7 must be
located on a dielectric cell e.g., . Equation (9) applled
to the conductor cell « is

—_—_ _+. LI
a, 4a Jy,

AICF', 1))
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Again, we choose 7y to represent a dielectric cell interior

_ to the dielectric while 8 is a half cell [15] directly under

the surface in the dielectric block. The surface cell rep-
resents the surface bound charge on the dielectric. In ac-"
cordance with (10) the case where the field point is lo-

cated in the dielectric has the term J /o replaced by E(7,

7). This is under the assumption that the dielectric is loss-

less. The lossy dielectric case is given by the combination

of both terms.

III. PARTIAL ELEMENT EQUIVALENT CIiRCUIT MODELS

In this section, we will extend the PEEC and rPEEC
modeling approaches for dielectric regions without ap-

- proximations with the exception of the discretizations.

The aim is to set up a set of circuit equations or equivalent
circuits where the unknowns are potentials as well as cur-
rents. Potentials correspond to voltages with the reference
node corresponding to the ‘‘node’’ at infinity. We use the
geometry in Fig. 2 to develop the circuit representation
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of the conductors and the dielectrics. In fact, we show
that the same conventional frequency independent circuit
elements can be used in the new model which are em-
ployed in the original PEEC and rPEEC models.

The coupling to a conductor cell by all the cell types is
considered first. We start the derivation by integrating
each term of the I.E. (12) over the volume v, of the con-
ductor cell « in Fig. 3

ig f® dv=lg Sf(?)‘dadl (13)
a a, Jau Ji

a Yo o

where v, is the volume of the conductor cell, «, a, is the
cross-section of the cell (x-z direction) and /, is the length
( y-direction) and f (¥) is the integrand. The surface cells
are integrated appropriately. This corresponds to averag-
ing the field point 7 over the cell volume »,,. Our method
corresponds to a Galerkin solution which is well known
to have a positive impact on the solution accuracy. How-
ever, additional integrations must be performed in com-
parison to point or line matching. We found that our so-
lution method is numerically very robust especially since
we use predominantly analytic integration for the coeffi-
cient computation.

After applying the integration to (12), we can assert
what the appropriate equivalent circuit is for each term of
the I.LE.. The first term of the I.E. can easily be shown to
be the resistance of the cell R, with the dc current 7 f =
(¢1 — ¢2)/R, since the current through the cell is I, =
Jya,. The resistance is as usual -

R = b 14

“ = sa. (14)

The second term applies also to the field point cell o and

its voltage drop adds to the resistance the cell. For both

the second and third terms in (12) we make use of the
laminar, uniform current flow through the cell to take

3,

o 1 al, /ot (15)
a)’

ot

outside the integral. With some help from [19], we rec-

ognize that the second term represents the partial self in-

ductance of the conductor cell o where the partial induc-

tance between two parallel cells o and 8 with parallel

current flow is given by
7

Lpos = &
Pet = 4z 4,0

S S K(7,, 7g) dv, dvg.  (16)
va YUg

For the rectilinear coordinates considered here, all non-
parallel cells are perpendicular for which the partial mu-
tual inductances are zero. Hence, the second and third
terms in (12) are simply interpreted as
dl, - dly

+ Lp

dt g (17

Lpoo —-
where the first term is the partial self inductance of the
cell o and the second term represents the inductive cou-
pling to cell « from a current in the cell 8.
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We best consider the case where the field point is lo-
cated inside the dielectric for the circuit interpretation of
terms four and five since this leads to the self terms for
these cells. We start with (10) and state the result as a
theorem for clarity, before giving a proof. First, we need.
to define the excess capacitance of a dielectric cell. We
resort to Fig. 3 for the illustration of the symbols used in
the following definition.

Definition 1: The excess capacitance C; of a dielectric
cell v is defined as

C+ P 6O(e'y B l)a'y ’
Yo" l

Y

(18)

where ¢, is the dielectric constant of the cell, a, is the
cross-section and L, is the length of the cell.

Surprisingly, we need to extend the concept of partial
inductances to include the case where one or both “‘con-
ductors’’ are dielectric cells rather than a conductor cells!
This is necessary for the circuit interpretation of the vol-
ume integrals for cells y and & in (12). The theorem below
states the result for the dielectric cells.

Theorem 1: The voltage across a dielectric cell y with

_ the potentials ®; and ®¢ applied to the nodes at the ends

of the cell is given by

s — P = v, + v
i) aUC-
vy = pr a I:C;“ —37}
. v
lce = C;- atc (19)

Theorem 1, is proven by starting with the I.LE. for the
dielectric case, (10), where we take the y-components the
same way as in (12) and where the field point is on the vy

" cell. Here, we only give the relevant terms which are dif-

ferent from the o case. The two terms for cell v are

I%E, (7', t;)
. _li_ = —/ Y > I '
E, + €o (e, 1) i SW—K( )—__6t2 dv’.
(20
We integrate this over the cell y, or
1 1
— S f®dv = — S S f(@ dadl. 21
a, Joy ay Jday Ji

The first term, which is the total field, integrates to v,

where the relation for v is given in differential form as
ic = C; dvc/dr. However, additionally an inductive
voltage drop is induced in v by the partial self-inductance
of the cell Lp.,, where v; = Lp.,, dic/dt. Note that in this
case the current is again correctly i, for the excess capac-
itance. Finally, the equivalent circuit for the diclectric is
established as C in series with Lp,,. The coupling to
other cells is through the partial mutual inductances as is
evident from the I.E.s.

The surface integrals in (12) over S/, S}, and S} are
the conventional coeflicients of potential and they need
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little new explanations. In this formulation, they all cor-
respond to free space coupling terms as in [15]. The next
section will present an alternative formulation for the ca-
pacitive part of an rPEEC model needed for retardation.

The best way to show a complete new PEEC equivalent
circuit is by example. Specifically, the first example be-
low, which is the dielectric cube in Fig. 4, gives the new
models presented in this paper.

IV. EQuivALENT CIRCUIT MODELS

As mentioned above, a key issue in the PEEC modeling
approach ‘is how the capacitances are included in the
equivalent circuit models. In fact, the concept of capaci-
tance matrices is invalid for the case where retardation is
significant. For this case, the coefficients of potential need
to be modeled. This is accomplished by representing the
potential coefficients by controlled sources. Assuming that
K capacitive cells are involved in the problem, then the
potential ®; on conductor i is given by

K
®.() = 2 p, Q) 22)
=
where Q; is the charge on conductor j and the time retar-
dation is

1
RJ
t, =1t — —

v C

(23)

where R;; is the distance between conductor i and j and ¢
is the speed of light. If ¢ = ¢ (no retardation) the above
equation can be inverted into the short circuit capacitance
matrix. However, this may not be a good strategy even
for this case since the inversion is taking place ‘‘auto-
matically’’ in the circuit solver when the JTacobian matrix
is solved.

It is possible to construct a circuit model using only the
coefficients of potential p,. The model [24] replaces the
capacitances with pseudo-capacitances to ground c| =
1/p,; and with controlled voltage sources for the coupling

(3] — Py et
U9 = 22— @/ (t)) 24)
JF1 i
where ®/ is the potential at the pseudo-capacitance j, as
shown in Fig. 1. The left hand side shows the capacitance
for a circuit with three nodes (A, B, and C) and the right
side shows the equivalent circuit model in terms of ca-
pacitance and equivalent sources.

The partial inductances are handled in a very similar
way by a partial self inductance Lp;; in series with a volt-
age source U (1):

Lpz'
U® () = .Z.L—’ v)(t])

J#i pjj

(25

where v is the voltage at the partial self inductance Lp;;.
From the above, we can see how to models all parts of an
equivalent circuits in terms of self-capacitance and in
terms of (potentially retarded) coupling sources.

Once the equivalent circuit models have been formed,
the circuit equations can be set up by the standard ap-
proaches for the systematic formulation underlying a cir-
cuit solver like the modified nodal analysis (MNA) [25]
or sparse tableau approach [23]. The difference to con-
ventional circuit analysis is that the retarded equations are
delayed differential algebraic system (DDAE) rather than
ordinary differential algebraic systems (DDE). In order to
represent the DDAE in a circuit simulator like ASTAP we
had to implement a history mechanism [20].

V. RESULTS

The first example is designed to enhance the impact of
the dielectric material on the solution, since the finite di-
electric model is the main contribution of this paper. In
general, we observed very good convergence of the so-
lution with the number of cells since our approach cor-
responds to a Galerkin solution with the integration over
the field point cells. Also, we used analytical integration
for the potential coefficients and mostly analytical inte-
gration for the partial inductances where the numerical
accuracy of the coeflicients was achievable similar to [19].
All the far coeflicients are approximated by simple point
and line sources with careful attention to the solution ac-
curacy.

Fig. 4 shows an example of a dielectric cube of ¢, = 5.
The size of the cube is 3 X 3 X 3 c¢m and a U-shaped
conductor is wrapped around three sides. To introduce
asymmetry, the top is only half covered by metal. The
half covered surface is in the positive z-direction while
the fully covered sides are in the negative z-direction (bot-
tom) and in the negative y-direction (left). This surface is
divided into two parts by an infinitesimal gap as is evident
from Fig. 4. The gap is excited in the middle by a unit
voltage source. Again, the purpose of this example is to
emphasize the impact of the polarization currents in the
dielectric on the result.

Fig. 5 shows schematically the new rPEEC model for
the dielectric cube example, where the partial inductances
are shown as black rectangles only. Also, the coupling
terms for the coefficients of potential are not shown for
clarity. In Fig. 6 we used a quasi-static capacitance ap-
proximation for the dielectric block. Since these capaci-
tances are mapped in with the free space cofficients of
potential, they are not shown and only the conductor
model is visible.

Further, we did not take the small resistance into ac-
count for the wide conductor. As a further simplification,
the PEEC models show only one division for the width of
the conductors in the cube problem. All the partial mutual
inductances in the same direction ate coupled.

Fig. 7 shows the electric field E, of the dielectric cube
at 200 MHz in a distance of three meters for ¢ = 90. The
upper solid curve shows the results of the rPEEC model
using the quasi-static capacitance approximation corre-
sponding to Fig. 6. The solution for the new rPEEC model
(lower solid curve) agrees closely with the dashed curve
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_Fig. 4. The dielectric cube example. Metal covers the “‘bottom,” “‘left’’
and half of the “*top’’ of the cube. The source is in the infinitesimal gap
on the ““left’”” face of the cube.

Fig. 5. A circuit mode for the dielectric cube example. The black rectan-
gles represent partial inductances. The black circles are circuit nodes on
conductors, the gray circles are internal dielectric nodes and the white cir-
cles are dielectric surface nodes. Note shown are the capacitive cross-cou-
plings between the various nodes nor are partial mutual inductances.

which is a method of moments (MoM) solution due to [8].
Further, we compared our solution with a MoM surface
formulation code [26]. This result is shown in the dotted
curve which is in close agreement with our rPEEC result.
As a second numerical experiment for the dielectric cube,
we compared the impedance of the cube at the source ter-
minals. This is a very sensitive measurement for this ex-

ample. Fig. 8 shows the source impedance as a function’

of frequency. Again, the new dielectric model shows ex-
cellent agreement with the MoM solver [8], while the
quasi-static capacitance model is somewhat in error as ex-
pected. Similar results have been observed for other ex-
amples. : -
To illustrate our new time domain computation facility
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Fig. 6. The quasi-static PEEC model for the dielectric cube. Capacitive
cross-coupling are not shown nor are partial mutual inductances.

80 ] T

Etectric Field (dBuV/m)

30 K Y T IR N B

-180 =135 -90. -45 0 435 90 - 135 180

theto (deg}

Fig. 7. The electric field E, of the dielectric cube at 200 MHz and ¢ 90
degrees. The upper solid curve is the field calculated using a quasi-static
dielectric model. The lower three curves show the field calculated with the
new circuit model (solid), with a method of moments volume formulation
(dashed) and a method of moments surface formulation (dotted).

N

we use the same example cube in Fig. 4. However, the
sinusoidal source is replaced by a ramp function with
rounded edges with a series resistance of 100 Q. The rise
time of the ramp is 0.1 ns and the response between the
outer edges of the conductors (on top and bottom) is
shown in Fig. 9. Note that the same TPEEC model was
used for both the time as well as the frequency domain.
This gives us confidence that the time domain results are
correct since we cannot compare them to the other tech:
niques. "
As a second time domain example we give the response
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Fig. 8. The source impedance of the dielectric cube. The solid curve shows
the quasi-static dielectric model, the dashed and dotted curves, which are
mostly on top of each other, show the new dielectric model and a method
of moments result.

0 2 4

Fig. 9. The time-domain voltage between top and bottom metal (outer
edges) of the dielectric cube for a 1 V step excitation with 0.1 ns
rise-time.

of a wire or trace on a printed circuit board driven by a .

standard TTL 74F04 chip driver. The length of the wire
is 15 cm the length of the board is 28 cm. Further, the
wire is loaded by another TLL 74F04 circuit. Detailed
equivalent circuits for both TTL inverters are used. Fur-
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Fig. 10. The driving chip of example two. The power- and ground-planes
and the board epoxy have been delected from the picture for better visibil-
ity. The figure shows the 74F04 (with pins 1, 12, and 14) and its socket,
part of the trace on the PCB and the two vias to the ground- and power

planes.

S
ot

Fig. 11. Part of an rPEEC model of example two. Wide lines are partial
inductances (conductors), thin lines partial inductances with a series ca-
pacitance (dielectrics). Not shown are the cross-couplings. Solid nodes are
metal nodes, grey nodes are internal dielectric nodes and white circles are
dielectric surface nodes. The figure shows the power pin and some internal
wiring, the corner of the chip case and the corner of the socket.

ther, the IC pins and sockets and the vias were modeled
with PEEC models in addition to the trace. Fig. 10 shows
the driver package model with the pins. Fig. 11 shows a
schematic rPEEC equivalent circuit for a part of the socket
and package. We excited the integrated circuit driver with
a 50 MHz rounded trapezoidal waveform. Fig. 12 shows
two waveforms, one at the output of the driver, measured
inside the IC package while the other is measured at the
end of the trace, inside the receiving IC package. As we
demonstrated before [27], the radiation from such a struc-
ture can be computed from the time domain results using
fast Fourier transform techniques. Fig. 13 finally shows
the radiation at three meters from this circuit.
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Fig. 12. The waveforms at the source (top) and load end (bottom) of the
. trace. The horizontal axis runs from about 10 to 42 ns.
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Fig. 13. The simulated radiation of the example in dB/ p,V three meters
" from the PCB.

VI. CONCLUSION

The work presented in this paper extends the PEEC and
rPEEC circuit modeling technique to an exact full wave

solution approach for problems with finite dielectrics: As

we demonstrated by the examples, the rPEEC circuit

model has many advantages especially if it is used in con-

junction with a general purpose, flexible time and fre-

quency domain circuit simulator like ASTAP. Also, cir-

cuit approximation can be used to simplify the solution’
approach such that larger problems can be solved. Fur-

ther, we gained much insight into many difficult problems

by solving them in both the frequency and the time do--
main.
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