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Abstract–The Partial Element Equivalent (Circuit (PEEC)

approach has proven to be useful for the modeling of many

different electromagnetic problems. The technique can be

viewed as an approach for the electrical circuit modeling for
arbitrary three dimensional geometries. For example, the ‘ ‘3D

transmission line” properties of VLSI interconnects and pack-

ages can be modeled. Recently, we extended the method to in-

clude retardation with the rPEEC models. So faw the dielectrics

have been taken into account only in an approximate way. In

this paper, we generalize the technique to include arbitrary ho-
mogeneous dielectric regions. The new circuit models are ap-
plied in the frequency as well as the time domain. The time

solution allows the modeling of VLSI systems which involve in-
terconnects as well as nonlinear transistor circuits.

I. INTRODUCTION

T HE SPEED of VLSI systems has increased consid-

erably in the last few years. For higlh performance

systems, the rise time of the signals are well below one

nanosecond and the cycle time is rapidly decreasing to

take advantage of the increased performance of new tech-

nologies. One of the consequences of this is that the ac-

curate electrical modeling of the passive parasitic ele-

ments has become more important since the interconnects

contribute a large portion to the signal delays. For VLSI

systems, other aspects like signal distortion, and unwanted

signal coupling among the different wires must be accu-

rately predicted since these factors limit the ultimate per-

formance of systems. Recently, other factors like electro-

magnetic interference (EMI) [1] have become important

for VLSI designs. They too require extensive modeling of

both circuits and interconnects. The main challenge in all

these problems is the complexity of the geometries which

must be modeled in order to provide realistic answers.

The topic of VLSI interconnect modeling is relatively

recent in comparison to the general area of transmission

line modeling. The first work on interconnections focused

mostly on two dimensional transmission line models e.g.,

[2] since the larger structures were described with MTi-

cient accuracy by this type of model for the frequencies

of interest. The two dimensional transmission line theory

requires that the cross-sections of the conductors remains

constant for a distance which is long compared to the

cross-sectional dimensions. Today, this alpproach is still

Manuscript received October 3, 1991; revised March 11, 1992.

The authors are with the T. J. Watson Research Center, 32-106, P.O.
Box 218, Yorktown Heights, NY 10598.

IEEE Log Number 9200933.

valid for some aspects of VLSI systems like the wires on

some printed circuit boards. As the structures have be-

come more miniaturized, the three dimensional aspects

have become more important, Progress has been made

since then in both” the two and three dimensional modeling

areas. A large number of references are given in [3] for

both two and three dimensional interconnect models.

Also, more recently, a relatively large body of work is

being performed in the three dimensional modeling in the

frequency domain using both finite difference e.g., [4],

[5] and integral equation formulations e.g., [6]-[9]. Also,

a number of commercially available tools have been cre-

ated recently aimed at the solution of such problems’ [10].

The majority of the tools and techniques are for the fre-

quency domain only.

Complexity is one of the main challenges which must

be overcome in the solution of these problems. Because

the number of transistors and interconnects in VLSI sys-

tems is continuously increasing, approximations must be

used whenever possible to manage the complexity. Cir-

cuit theory is probably the area where complexity has been

managed the best by the application of many different

model simplification techniques. This motivated us to

translate the electromagnetic interconnect problem to the

circuit domain. Circuit model simplifications can be di-

vided into two different cases. In the first case, we can set

up a simplified model to begin with. For example the small

dimensions and the limited distance of the on chip cou-

pling may make the use of retardation unnecessary and

the far cctuplings may be ignored. Also, most of the cou-

pling occurs within a wavelength of the highest fre-

quency. In the second class of approximations, we can

replace a complex model by a far simpler one which is

sometimes called a macromodel. The AWE technique [11]

is one of the approaches where essentially a lower fre-

quency approximation is used to produce a much simpler

model which is adequate for the frequencies of interest

for the application at hand. In fact, the AWE technique

has been applied very recently to some of these geome-

tries [12].

Circuit oriented modeling of electromagnetic prob-

lems has a long history [13]. More recent work in this

area is based on both differential equations [14] as well as

the integral equation formulations [15]. It is interesting to

note that most texts e.g. [16] do attempt to give some

circuit interpretation of Maxwell’s equations. However

they only give a rathet elementary treatment of the sub-

001 8-9480/92$03 .00 @ 1992 IEEE



1508 IEEE TRANSACTIONSON MICROWAVETHEORYAND TECHNIQUES, VOL. 40, NO. 7, JULY 1992

ject. A comprehensive approach for the circuit modeling

of three dimensional geometries is the partial element

equivalent approach (PEEC) [15]. One of the useful as-

pects of PEEC oriented modeling approach is its gener-

ality. The models are applicable both in the time and fre-

quency domain. Further, calculations for the partial

capacitances (Fig. 1) or coefficients of potential and par-

tial inductances for the model can be performed inde-

pendently of the actual circuit domain computations [17]-

[19] like the transient analysis or the frequency analysis.

The approximate implementation of these models is not

unique and different representations may be used depend-

ing on the problem solved.

The accuracy of the PEEC circuit modeling approach

is the same as that of the full-wave solution. In fact, it is

very similar to the moment method (MoM) solution [7],

with the exception of the local approximation of the cur-

rents and the charges. Further, it is well known that the

TEM models for two dimensional geometries correspond

to an exact solutions for the wave propagation based on

static capacitance and inductance computations. Hence,

as an approximation, it is possible to employ quasi-static

capacitances for the PEEC models for geometries with

finite dielectrics [3]. It is obvious that this approximation

will lead to errors for sufficiently high frequencies. In fact,

the circuit modeling using capacitances is invalid as soon

as the retardations become significant. PEEC models

which include retarded effects, called rPEEC, have re-

cently been shown to be useful for the circuit modeling

of radiation type problems [20]. Our basic approach is to

include the retardation by delay sources in both the time

and the frequency domain.

In this paper, we give an extension of the PEEC and

rPEEC approach. The key new work is that finite dielec-

tric region are included in the formulation without ap-

proximations. This makes the models analogous to a full-

wave solution. The main differences between our models

and a full-wave model are that we formulate the problem

in the circuit domain and that charges as well as currents

are used as unknowns for both the time and frequency

domain solutions. This extension of the rPEEC modeling

approach is valuable for the solution of many practical

problems. Also, from a theoretical point of view, it is an

important tool for the study of the couplings between the

electric and magnetic field at dielectric interfaces. For ex-

ample, the sources of coupling can be identified and the

magnitude and the nature of this coupling can be studied.

Other issues of interest are the modeling of dielectric in-

terfaces with as few additional unknowns as possible to

keep the model complexity small. If the dielectrics can be

represented with few additional internal nodes, as is the

case for thin layers, then the solution is very efficient in

term of unknowns.

In Section II we derive the general integral equation

formulation with the extension to multiterminal elements

and dielectric regions. Sections III and IV is devoted to

the derivation of the new rPEEC model and Section V

gives results of the application of the method.
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Fig. 1. Representation of the capacitive terms of a circuit with three nodes
A, B and C and new equivalent circuit.

H. FORMULATION INCLUDING FINITE DIELECTRIC

REGIONS

A. Basic Formulation

The interconnection problem we consider here has ar-

bitra~ finite size dielectric regions besides the conductors

or wires. A simple conductor—dielectric structure is dis-

played in Fig. 2. We only need to include 4 bodies in our

examples since this is sufficient to show all the necessary

couplings. Also, we avoid all the rather obvious sums over

all the conductors with the benefit of keeping all the equa-

tions simple. We start from the work in [15] and use the

additional insight on how to include dielectric layers in

the moment method solution e.g. [6], [8]. Here, we spe-

cifically use approximations of the currents, charges and

potentials (voltages) which are appropriate for an equiv-

alent circuit representation. The key idea of the formula-

tion is to model the displacement current due to the bound

charges for dielectrics with ~, > 1 separately from the

conducting currents due to the free charges [21]. Hence,

the Maxwell equation for the displacement is taken into

account as

v. E=qF+qB (1)
60

where q F is the free charge and q B is the bound charge

due to the dielectric regions. The description for the di-

electric region is separated in the solution method. To ar-

rive at a consistent equivalent circuit for the static as well

as the dynamic case, the dielectric is represented with a

three-dimensional mesh of excess capacitances of a value

defined in (18). As will be evident below, this leads to a

very efficient solution approach.
We write the sum of all the sources of electric field [16]

at any point in a conductor

r (7, t)770(7, t)= —
+ (92(?,t)

— + Vx (F, t)
at

(2)
t7

where ~. is an applied electric field (if any), ~ c is the

current density in a conductor, ~ and @ are vector and

scalar potentials, respectively. The dielectrics are taken

into account separately as an equivalent current in a free

space environment. This is accomplished through adding

and subtracting e. (d~/ at) in the Maxwell equation for H,
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Fig. 2. Illustration of the finite conductor and dielectric problem.

or

v

Here, the

current

aE ai?
x 77=7=+ q)(c, – l),—+ q)—.

at at
(3)

equivalent current in (3) is wfkten as a total

—

7(7,t) = F(7, t)+ e~(er – 1) : (4)

where ~c (F, t) is the conductor current ancl the remainder

of the equations is the equivalent polarization current due

the the dielectrics. We can easily check that (3) and (4)

reduce to the standard case for e, = 1. The vector poten-

tial ~ is for a single conductor at afield pointvF given by

Z(7, t) = ~
!

4T ~, K(T, ~’)~(~’, t~) dv’ (5)

where v‘ is the volume of the material over which the

current density is flowing and the retardation time is given

by

1~-~fl
td=t– (6)

c

which simply is the time retarded by the free space travel

time between the points T and T‘. In the fcmtnulation used

here, both the retardation and the Greens functions are

free space quatities. For convenience and notational clar-

ity we define the Kernel

(7)

Similarly, the scalar potential is

1
*(F, t)= —

[
K(F,7’)q T(r’, t) dv’

47K0 2,,
(8)

where q T = q~ + q~. Finally, using the above equations,

we can formulate an integral equation for the electric field

at a point 7 which is to be located either on a conductor

or inside a dielectric region. Starting frc~m (2) with the

externally applied electric field set to zero, and substitut-

ing for ~ and @ from (5) and (8) respectively we get for

the field point on a conductor

v
+— 14TEoe u‘

K(7-, 7’)q T(r’, t) dv’ == O.

The other case we need to consider is the situation

the field point is in a dielectric region with e, > 1

(9)

when

We observe that the form of both equations is the same,

with the exception of the local electric field, which is

given by the material in which the field point resides. This

simplifies the discretization and equivalent circuit inter-

pretations for (9) and (10) which are performed in the next

section.

B. Discretization of Unknowns

The conductor arrangement in Fig. 2 includes the types

of conductors and dielectric regions which must be con-

sidered for a general formulation of the mixed conductors

and dielectrics problem. For clarity we assume that the

dielectrics are lossless. To solve the integral equation (9)”

numerically we choose appropriate approximation for the

current, potential and charge variables. We will not use

the standard surface approximations which are usually

employed for the infinite frequency solution. Convention-

ally, the current is assumed to flow in a thin surface layer

only due to the skin effect approximation which is more

suitable for microwave applications. Here, we assume the

current flow to be uniform inside a cell of conductor,

which leads to a solution which is consistent with the low

frequency solution also. Hence, electrically thick conduc-

tors must still be further divided if the skin effect is to be

modeled accurately. In many practical cases this can be

avoided since the conductor thicknesses are often com-

parable to the skin depth. The charges are on the surfaces

of the conductors. The different approximations used for

the currents and charges require that we cannot utilize the

continuity equation directly to replace the charges by cur-
rent variables as is done in the convcmtiomd moment type

solutions [7] in the form

(11)

The charges are, in all the solution approaches, assumed
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Fig. 3. Cell Structure for finite conductors.

to be’ located on the conductor surfaces since the relaxa-

tion times move the charges “instantaneously” to the

conductor surfaces for the high conductivities of the con-

ductors involved. In our approach, we will implement the

continuity equation in the form of Kirchoffs current law.

This task can be left to the circuit solver which can be a

general purpose program like SPICE [22] or ASTAP [23].

The above considerations are used in the actual discre-

tization of the currents and charges as well as the poten-

tials. We divide the conductors up into rectangular cells

with a uniform current flow, similar to the conventional

approximation for a resistance and partial inductance

problems [15], [19]. Hence, the insides of the conductor

and the dielectric regions are divided up into “blocks” or

“cells” for which we assume that the conduction or dis-

placement currents respectively are uniform. Further, the

surfaces of the conductors are completely laid out with

capacitive cells to represent the displacement currents.

Fig. 3 gives example cells for both conductor and dielec-

tric surfaces which may belong to various surfaces in the

geometry shown in Fig. 2. The dotted area cells in Fig.

3 are surface patches for the free or total charge densities,

q~ or q ~ respectively on the conductors, depending on

whether the surfaces touch dielectric regions. All dielec-

trics needs to be covered with surface cells for bound

charge q~. The volume cells in the dielectric regions are

the appropriate representation for the polarization cur-

rents inside the dielectrics, as will become evident below.

The volume parts of the a, 6 and 6 cells are located di-

rectly under the surface while -y is an interior cell.

C. Discretization of the Integral Equation

In this subsection we will apply the discretizations of

the last subsection to the integral equation (9) for the cell

structure shown in Fig. 3. The two conductor and dielec-

tric cells shown may be located either on the same or on

different bodies. Dielectric cell T is an internal cell and

has no outside surface while dielectric cell 6 is on the

surface of the dielectric body. Hence, the derivation in-

cludes all possible cases. We start by recognizing that

three coupled integral equation (I. E.) result if we repre-

sent the vector quantities in terms of the Cartesian coor-

dinates. For this case the vector quantities are ~ = .lX~ +

JYj + JZf and ~ = E# + Eyj + EZ2. Using this, the

three 1.E. are identical in form with the exception of the

space directions x, y, z. Hence, we will consider cells in

the y-direction only, without loss of generality. This ori-

entation corresponds to the cells shown in Fig. 3. Two

different cases must be considered for the general case. In

one situation, we locate the field point F on a conductor

cell e.g. a. For the second case the field point 7 must be

located on a dielectric cell e.g., T. Equation (9) applied

to the conductor cell a is

Again, we choose --yto represent a dielectric cell interior

to the dielectric while ~ is a half cell [15] directly under

the surface in the dielectric block. The surface cell rep-
resents the surface bound charge on the dielectric. In ac-”

cordance with (10) the case where the field point is lo-

cated in the dielectric has the term J/o replaced by E(7,

t). This is under the assumption that the dielectric is loss-
less, The loss y dielectric case is given by the combination

of both terms.

III. PARTIAL ELEMENT EQUIVALENT CIRCUIT MODELS

In this section, we will extend the PEEC and rPEEC

modeling approaches for dielectric regions without ap-

proximations with the exception of the discretizations.

The aim is to set up a set of circuit equations or equivalent

circuits where the unknowns are potentials as well as cur-

rents. Potentials correspond to voltages with the reference

node corresponding to the “node” at infinity. We use the

geomet~ in Fig. 2 to develop the circuit representation
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of the conductors and the dielectrics. In fact, we show

that the same conventional frequency independent circuit

elements can be used in the new model which are em-

ployed in the original PEEC and rPEEC models.

The coupling to a conductor cell by all the cell types is

considered first. We start the derivation by integrating

each term of the 1.E. (12) over the volume v. of the con-

ductor cell a in Fig. 3

where vu is the volume of the conductor cell, a, a. is the

cross-section of the cell (x-z direction) and la is the length

(y-direction) and ~(7) is the integrand. The surface cells
are integrated appropriately. This corresponds to averag-

ing the field point 7 over the cell volume V(X. Our method

corresponds to a Galerkin solution which is well known

to have a positive impact on the solution accuracy. How-

ever, additional integrations must be performed in com-

parison to point or line matching. We found that our so-

lution method is numerically very robust especially since

we use predominantly analytic integration for the coeffi-

cient computation.

After applying the integration to (12), we can assert

what the appropriate equivalent circuit is for each term of

the I. E.. The first term of the I.E. can easily be shown to

be the resistance of the cell R. with the dc current Z$ =

(01 – 42) /& since @ Current through the cell is ZY =
Jya.. The resistance is as usual

(14)

The second term applies also to the field point cell a and

its voltage drop adds to the resistance the cell. For both

the second and third terms in (12) we make use of ,the

laminar, uniform current flow through the cell to take

aJy

-z = -$ aIy/at (15)

outside the integral. With some help from [19], we rec-

ognize that the second term represents the partial self in-

ductance of the conductor cell a where the partial induc-

tance between two parallel cells a and (3 with parallel

current flow is given by

For the rectilinear coordinates considered here, all non-

parallel cells are perpendicular for which the partial mu-

tual inductances are zero. Hence, the second and third

terms in (12) are simply interpreted as

(17)

where the first term is the partial. self inductance of the

cell a and the second term represents the inductive cou-

pling to cell Q from a current in the cell ~.

We best consider the case where the field point is lo-

cated inside the dielectric for the circuit interpretation of

terms four and five since this leads to the self terms for

these cells. We start with (10) and state the result as a

theorem for clarity, before giving a proof. First, we need

to define the excess capacitance of a dielectric cell. We

resort to Fig. 3 for the illustration of the symbols used in

the following definition.

Definition 1: The excess capacitance C; of a dielectric

cell ~ is defined as

(18)

where 67 is the dielectric constant of the cell, a7 is the

cross-section and 17 is the length of the cell.

Surprisingly, we need to extend the concept of partial

inductances to include the case where one or both “con-

ductors” are dielectric cells rather than a conductor cells!

This is necessary for the circuit interpretation of the vol”

ume integrals for cells y and 6 in (12). The theorem below

states the result for the dielectric cells.

Zheorem 1: The voltage across a dielectric cell -y with

the potentials @5 and @,5applied to the nodes at the ends

of the cell is given by

@~–4G=v~+v~

(19)

Theorem 1, is proven by starting with the I.E. for the

dielectric case, (10), where we take the y-components the

same way as in (12) and where the field point is on the -y

cell. Here, we only give the relevant terms which are dif-

ferent from the cz case. The two terms for cell T are

(20)

We integrate this over the cell -y, or

1—
!

~(7) dv = L
![

~ f(~) da dl. (21)
% u? % a~ ~

The first term, which is the total field, integrates to v=,

where the relation for UC is given in differential form as

ic = C; dvc/dt. However, additionally an inductive

voltage drop is induced in y by the partial self-inductance

of the cell Lp77 where vL = Lp7y dic/dt. Note that in this

case the current k again cdrrectly ic for the excess capac-

itance. Finally, the equivalent circuit for the dielectric is

established as C; in series with Lp7y. The coupling to

other cells is through the partial mutual inductances as is

evident from the I.E.s.

The surface integrals in (12) over S:, S&, and S$ are

the conventional coefficients of potential and they need
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little new explanations. In this formulation, they all cor-

respond to free space coupling terms as in [15]. The next

section will present an alternative formulation for the ca-

pacitive part of an rPEEC model needed for retardation.

The best way to show a complete new PEEC equivalent

circuit is by example. Specifically, the first example be-

low, which is the dielectric cube in Fig. 4, gives the new

models presented in this paper.

IV. EQUIVALENT CIRCUIT MODELS

As mentioned above, a key issue in the PEEC modeling

approach “is how the capacitances are included in the

equivalent circuit models. In fact, the concept of capaci-

tance matrices is invalid for the case where retardation is

significant. For this case, the coefficients of potential need

to be modeled. This is accomplished by representing the

potential coefficients by controlled sources. Assuming that

K capacitive cells are involved in the problem, then the

potential @i on conductor i is given by

K

(22)

where Qj is the charge on conductor j and the time retar-

dation is

(23)

where Rti is the distance between conductor i and j and c

is the speed of light. If t~ = t (no retardation) the above

equation can be inverted into the short circuit capacitance

matrix. However, this may not be a good, strategy even

for this case since the inversion is taking place ‘ ‘auto-

matically” in the circuit solver when the Jacobian matrix

is solved.

It is possible to construct a circuit model using only the

coefficients of potential pl~. The model [24] replaces the

capacitances with pseudo-capacitances to ground c; =

1/pli and with controlled voltage sources for the coupling

(24)

where E?; is the potential at the pseudo-capacitance j, as

shown in Fig. 1. The left hand side shows the capacitance

for a circuit with three nodes (A, B, and C) and the right

side shows the equivalent circuit model in terms of ca-

pacitance and equivalent sources.

The partial inductances are handled in a very similar

way by a partial self inductance Lpjj in series with a volt-

age source U\L) (t):

(25)

where v; is the voltage at the partial self inductance Lpjj.

From the above, we can see how to models all parts of an

equivalent circuits in terms of self-capacitance and in

terms of (potentially retarded) coupling sources.

Once the equivalent circuit models have been formed,

the circuit equations can be set up by the standard ap-

proaches for the systematic formulation underlying a cir-

cuit solver like the modified nodal analysis (MNA) [25]

or sparse tableau approach [23]. The difference to con-

ventional circuit analysis is that the retarded equations are

delayed differential algebraic system (DDAE) rather than

ordinary differential algebraic systems (DDE). In order to

represent the DDAE in a circuit simulator like ASTAP we

had to implement a history mechanism [20].

V. RESULTS

The first example is designed to enhance the impact of

the dielectric material on the solution, since the finite di-

electric model is the main contribution of this paper. In

general, we observed very good convergence of the so-

lution with the number of cells since our approach cor-

responds to a Galerkin solution with the integration over

the field point cells. Also, we used analytical integration

for the potential coefficients and mostly analytical inte-

gration for the partial inductances where the numerical

accuracy of the coefficients was achievable similar to [19].

All the far coefficients are approximated by simple point

and line sources with careful attention to the solution ac-

curacy.

Fig. 4 shows an example of a dielectric cube of ~, = 5.

The size of the cube is 3 x 3 X 3 cm and a U-shaped

conductor is wrapped around three sides. To introduce

asymmetry, the top is only half covered by metal. The

half covered surface is in the positive z-direction while

the fully covered sides are in the negative z-direction (bot-

tom) and in the negative y-direction (left). This surface is

divided into two parts by an infinitesimal gap as is evident

from Fig. 4. The gap is excited in the middle by a unit

voltage source. Again, the purpose of this example is to

emphasize the impact of the polarization currents in the

dielectric on the result.

Fig. 5 shows schematically the new rPEEC model for

the dielectric cube example, where the partial inductances

are shown as black rectangles only. Also, the coupling

terms for the coefficients of potential are not shown for

clarity. In Fig. 6 we used a quasi-static capacitance ap-

proximation for the dielectric block. Since these capaci-

tances are mapped in with the free space coefficients of

pQtential, they are nQt shown and only the conductor
model is visible.

Further, we did not take the small resistance into ac-

count for the wide conductor. As a further simplification,

the PEEC models show only one division for the width of

the conductors in the cube problem. All the partial mutual

inductances in the same direction aie coupled.

Fig. 7 shows the electric field Ed of the dielectric cube

at 200 MHz in a distance of three meters for @ = 90. The

upper solid curve shows the results of the rPEEC model

using the quasi-static capacitance approximation corre-

sponding to Fig. 6. The solution for the new rPEEC model

(lower solid curve) agrees closely with the dashed curve
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, Fig. 4. The dielectric cube example. Metal covers the ‘ ‘bottom, ” ‘ ‘left”

and half of the ‘ ‘to~” of the cube. The source is in the infinitesimal za~
on the “left” face jf the cube.,

r?

1
Fig. 5. A circuit mode for the dielectric cube example. The black rectan-

gles represent partial inductances. The black circles are circuit nodes on

conductors, the gray circles are internal dielectric nodes and the white cir-

cles are dielectric surface nodes. Note shown are the capacitive cross-cou-

plings between the various nodes nor are partial mutual inductances.

which is a method of moments (MoM) solution due to [8].

Further, we compared our solution with a MoM surface

formulation code [26]. This result is shown in the dotted

curve which is in close agreement with our rPEEC result.

As a second nume@cal experiment for the dielectric cube,

we compared the impedance of the cube at the source ter-

minals. This is a very sensitive measurement for this ex-

ample. Fig. 8 shows the source impedance as a function

of frequency. Again, the new dielectric model shows ex-

cellent agreement with the MoM solver [8], while the

quasi-static capacitance model is somewhat in error as ex-

pected. Similar results have been observed for other ex-

amples.
To illustrate’ our new time domain computation facility
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Fig. 6. The quasi-static PEEC model for the dielectric cube. Capacitive
cross-coupling are not shown nor are partial mutual inductances.

40.

‘1

,’ ~

-180 -135 -90 -45 0 45 90 135
Lheto(deg)

Fig. 7. The electric field E@of the dielectric cube at 200 MHz and @ 90

degrees. The upper solid curve is the field calculated using a quasi-static

dielectric model. The lower three curves show the field calculated with the
new circuit model (solid), with a method of moments volume formulation

(dashed) and a method of moments surface formulation (dotted).

\

we use the same example cube in Fig. 4. However, the

sinusoidal source is replaced by a ramp furtction with

rounded edges with a series resistance of 100 Q. The rise

time of the ramp is 0.1 ‘ns and the response between the

outer edges of the conductors (on top and bottom) is
shown in Fig. 9. Note that the same rPEEC model was

used for both the time as well as the frequency domain.

This gives us confidence that the time domain results are

correct since we cannot compare them to the other tech-

niques.

As a second time domain example we give the response



1514 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 40, NO. 7, JULY 1992

800

600

200

I I I I

o
0 200

400Frqumy (MHz~OO

800 1000

Fig. 8. The source impedance of the dielectric cube. The solid curve shows

the quasi-static dielectric model, the dashed and dotted curves, which are
mostly on top of each other, show the new dielectric model and a method

of moments result.
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Fig. 9. The time-domain voltage between top and bottom metal (outel

edges) of the dielectric cube for a 1 V step excitation with O. 1 ns
rise-time.

of a wire or trace on a printed circuit board driven by a

standard TTL 74F04 chip driver. The length of the wire

is 15 cm the length of the board is 28 cm. Further, the

wire is loaded by another TLL 74F04 circuit. Detailed

equivalent circuits for both TTL inverters are used. Fur-

Fig. 10. The driving chip of example two. The power- and ground-planes

arr~ the board epoxy-hav~ been delected from the picture for-better visibil-
ity. The figure shows the 74F04 (with pins 1, 12, and 14) and its socket,

part of the trace on the PCB and the two vias to the ground- and power
planes.

o

0

0

0 Q

o

Q

e

+

+5V I

Fig. 11. Part of an rPEEC model of example two. Wide lines are partial

inductances (conductors), thin lines partial inductances with a series ca-
pacitance (dielectrics). Not shown are the cross-couplings. Solid nodes are
metal nodes, grey nodes are internal dielectric nodes and white circles are
dielectric surface nodes. The figure shows the power pin and some internal

wiring, the corner of the chip case and the comer of the socket.

ther, the IC pins and sockets and the vias were modeled

with PEEC models in addition to the trace. Fig. 10 shows

the driver package model with the pins. Fig. 11 shows a

schematic rPEEC equivalent circuit for a part of the socket

and package. We excited the integrated circuit driver with

a 50 MHz rounded trapezoidal waveform. Fig., 12 shows

two waveforms, one at the output of the driver, measured

inside the IC package while the other is measured at the

end of the trace, inside the receiving IC package. As we

demonstrated before [27], the radiation from such a struc-

ture can be computed from the time domain results using

fast Fourier transform techniques. Fig. 13 finally shows

the radiation at three meters from this circuit.
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100

80

20

0

Fig. 12. The waveforms at the source (top) and load end (bottom) of the
trace. The horizontal axis runs from about 10 to 42 ns.

-o 200 40( ’60Q 800 1000
r-v w)

Fig. 13. .The simulated radiation of the example in dlB/PV three meters
from the PCB.

VI. CONCLUSION

The work presented in this paper extends the PEEC and

rPEEC circuit modeling technique to an exact full wave

solution approach for problems with finite dielectrics. As

we demonstrated by the examples, the rPEEC circuit

model has many advantages especially if it is used in con-

junction with a general purpose, flexible time and fre-

quency domain circuit simulator like ASTAP. Also, cir-

cuit approximation can be used to simplify the solution

approach such that larger problems can be solved. Fur-

ther, we gained much insight into many difficult problems

by solving them in both the frequency and the time do-

main.
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